
Data Structure and Algorithm BCA 3rd  

Topic:  

Introduction to Data Structure  

Introduction to Data Structure (2 hrs) 

Data structures are a fundamental aspect of computer science and software engineering. They form the 

backbone of efficient algorithms and play a significant role in organizing and storing data for quick and 

efficient access and modification. Understanding data structures is crucial for anyone learning to write 

efficient code, as choosing the right data structure for a given problem can have a profound impact on 

performance and scalability. 

 

1. Definition of Data Structure 

A data structure is a specialized format for organizing, processing, retrieving, and storing data. It 

provides a way to manage and store data efficiently so that operations like searching, insertion, deletion, 

and updating can be performed with minimal time and space complexity. 

In simpler terms, a data structure defines how data is stored in a computer’s memory, and how it can be 

accessed or modified in a structured way. The choice of data structure can impact the efficiency of the 

algorithm being used, especially when dealing with large datasets. 

Examples of Data Structures 

 Array: A collection of elements identified by index or key. 

 Linked List: A linear collection of nodes, each containing data and a reference to the next node. 

 Stack: A linear collection of elements following the Last In First Out (LIFO) principle. 

 Queue: A linear collection of elements following the First In First Out (FIFO) principle. 

 Tree: A hierarchical data structure consisting of nodes with a parent-child relationship. 

 Graph: A collection of nodes connected by edges, used to represent relationships or networks. 

Each of these data structures serves a specific purpose and can be used in different contexts depending 

on the problem at hand. 

 

2. Abstract Data Type (ADT) 

An Abstract Data Type (ADT) is a theoretical concept used to define a data structure in terms of its 

behavior (what operations are possible) rather than its concrete implementation. An ADT focuses on 

what the data structure is supposed to do, not how it is implemented. This abstraction helps in designing 

software that is independent of the underlying implementation. 

Key Characteristics of ADTs: 



 Encapsulation: ADTs abstract away the details of how data is stored and focus only on the 

operations that can be performed on the data. 

 Operations: An ADT is defined by a set of operations (e.g., insert, delete, retrieve) that are 

allowed on the data. 

 Interface: ADTs specify the interface (the “what” is provided) without revealing the internal 

workings (the “how”). 

For example: 

 A Stack is an ADT, and it provides operations like push(), pop(), and peek(). The underlying 

implementation might use an array or a linked list, but the user of the stack does not need to 

know the details of the implementation, just the operations it supports. 

 A Queue is also an ADT, and it provides operations like enqueue() and dequeue(). 

In essence, ADTs are used to define the functionality and expected behaviors of data structures without 

getting bogged down in implementation details. 

 

3. Importance of Data Structures 

The importance of data structures cannot be overstated as they form the foundation of algorithms and 

are crucial for various applications in software development. Here are some reasons why data structures 

are important: 

1. Efficient Data Storage and Access: 

Data structures provide an efficient way of storing and accessing data. For example, searching for an 

element in an unsorted array may take O(n) time, but using a binary search tree can reduce the time 

complexity to O(log n), making a significant performance improvement when dealing with large datasets. 

2. Optimal Use of Resources: 

Choosing the right data structure can make the system more efficient in terms of both time and space. 

For instance, an array might be the best choice when elements are fixed and frequently accessed, while 

a linked list could be more suitable when data needs to be dynamically inserted or deleted. 

3. Simplifying Complex Operations: 

Certain problems can be solved more easily using specialized data structures. For example, if you’re 

dealing with problems involving hierarchical data (like file systems or organizational charts), using tree 

data structures (e.g., binary trees, AVL trees) makes it easier to manage the data and perform operations 

like searching, adding, and deleting nodes. 

4. Foundation for Algorithms: 

Data structures are fundamental to many algorithms. Algorithms like sorting (quick sort, merge sort) and 

searching (binary search, depth-first search) rely heavily on the choice of data structure. A better data 

structure can lead to a more efficient algorithm, reducing computational costs. 



5. Scalability and Performance: 

As systems grow and handle more data, having an efficient data structure becomes critical for ensuring 

scalability. For example, databases often use B-trees or hashing techniques to efficiently index and 

retrieve large amounts of data. 

6. Real-World Applications: 

Data structures are widely used in real-world applications: 

 Databases use tables (arrays) for indexing and searching records. 

 Networking uses queues for managing packets of data. 

 Operating systems rely on stacks and queues for process management. 

 Web browsers use stacks (for managing the back-and-forward navigation) and trees (for the 

DOM structure). 

7. Problem Solving and Algorithm Design: 

The ability to choose and implement the appropriate data structure is essential for solving real-world 

problems. For example, in a graph traversal problem, you may choose a depth-first search (DFS) 

or breadth-first search (BFS) algorithm, and these algorithms rely on stacks and queues, respectively. 

 

Conclusion 

In conclusion, data structures are essential for efficiently organizing and manipulating data, and they 

play a central role in algorithms and system design. Understanding the abstract data type concept helps 

in focusing on the operations and functionality of data structures, while knowledge of 

their importance empowers developers to choose the right structure for the task, ensuring optimal 

performance. Data structures form the backbone of computer science and are indispensable in designing 

scalable and efficient systems. 

 

The Stack   

The Stack (3 hrs) 

A stack is a linear data structure that follows the Last In First Out (LIFO) principle. This means that the 

last element added to the stack is the first one to be removed. The stack is often used in situations 

where we need to reverse data or manage processes that must be completed in reverse order. Stacks are 

used widely in algorithms, function calls, parsing expressions, and other computational processes. 

 

1. Introduction to Stack 

A stack is a collection of elements with two main operations: 



 Push: Add an element to the stack. 

 Pop: Remove the top element from the stack. 

The stack follows the LIFO (Last In, First Out) order. This means that elements are added to and removed 

from the same end, known as the top of the stack. A real-world analogy for a stack is a pile of plates. 

When a new plate is added, it goes on top, and when a plate is removed, the one on top is taken away. 

Stacks are used in many computer applications, such as: 

 Function calls in recursion (each recursive call is pushed onto the stack). 

 Undo operations in software (each previous state is pushed and popped from a stack). 

 Expression evaluation (infix, postfix, and prefix). 

 

2. Stack as an Abstract Data Type (ADT) 

An Abstract Data Type (ADT) is a high-level description of a data structure that specifies its behavior, not 

the implementation details. A stack as an ADT can be defined as: 

 Operations: 

o Push(element): Insert an element onto the stack. 

o Pop(): Remove and return the top element of the stack. 

o Peek(): Return the top element without removing it. 

o isEmpty(): Check if the stack is empty. 

o Size(): Return the number of elements in the stack. 

The abstract nature of the stack allows it to be implemented in various ways, such as using arrays, linked 

lists, or even dynamic resizing techniques, but its operations and behavior remain consistent across all 

implementations. 

 

3. POP and PUSH Operations 

The PUSH and POP operations are the fundamental operations that define the stack’s behavior: 

PUSH Operation 

 Purpose: The PUSH operation adds an element to the stack. 

 How It Works: 

o The new element is added to the top of the stack. 

o If implemented using an array, the top index is incremented, and the new element is 

placed at the new top. 



o If implemented using a linked list, a new node is created and linked to the current top 

node. 

Example: 

stack = [] 

stack.append(10)  # PUSH 10 to the stack 

stack.append(20)  # PUSH 20 to the stack 

POP Operation 

 Purpose: The POP operation removes and returns the top element of the stack. 

 How It Works: 

o The top element is removed from the stack. 

o If implemented using an array, the top index is decremented. 

o If implemented using a linked list, the node at the top is removed, and the next node 

becomes the new top. 

Example: 

top = stack.pop()  # POP the top element from the stack 

Other Operations 

 Peek/Top: Returns the element at the top of the stack without removing it. 

 top_element = stack[-1]  # Returns the top element without popping it 

 isEmpty: Checks whether the stack is empty or not. 

 if not stack:  # Returns True if the stack is empty 

     print("Stack is empty") 

 

4. Stack Applications 

Stacks have many practical applications, especially in computational problems involving recursion, 

expression evaluation, and backtracking. Some important applications of stacks include: 

1. Evaluation of Infix, Postfix, and Prefix Expressions 

Stacks are commonly used to evaluate expressions written in infix, postfix, and prefix notations. Let’s 

look at how stacks are used to evaluate these expressions: 

Infix Expression Evaluation 



Infix notation is the common way of writing expressions, where operators are placed between operands 

(e.g., A + B). However, this notation requires parentheses to enforce precedence rules, making 

evaluation difficult without stacks. 

To evaluate infix expressions using a stack: 

1. Convert the infix expression to postfix notation using a stack. 

2. Evaluate the postfix expression. 

Postfix Expression Evaluation 

In postfix notation (also known as Reverse Polish Notation), operators follow their operands. Postfix 

expressions are easier to evaluate because they do not require parentheses to denote operator 

precedence. 

Steps for evaluating a postfix expression: 

 Read the postfix expression from left to right. 

 Push operands onto the stack. 

 When an operator is encountered, pop operands from the stack, apply the operator, and push 

the result back onto the stack. 

 After processing all symbols, the result will be at the top of the stack. 

Example: Evaluate the postfix expression: 5 3 + 4 * 

 Push 5 and 3 onto the stack. 

 Encounter +, pop 3 and 5, calculate 5 + 3 = 8, and push the result 8. 

 Push 4 onto the stack. 

 Encounter *, pop 4 and 8, calculate 8 * 4 = 32, and push the result 32. 

 The final result is 32. 

Prefix Expression Evaluation 

Prefix notation (also known as Polish Notation) places operators before operands. To evaluate a prefix 

expression: 

1. Read the expression from right to left. 

2. Push operands onto the stack. 

3. When an operator is encountered, pop operands from the stack, apply the operator, and push 

the result back onto the stack. 

4. The result will be at the top of the stack after processing all symbols. 

 



2. Conversion of Expressions 

Stacks are also used to convert expressions between infix, postfix, and prefix notations. The conversion 

process involves scanning the expression and applying the stack-based algorithm for each type of 

expression. 

Infix to Postfix Conversion 

To convert an infix expression to a postfix expression: 

1. Scan the infix expression from left to right. 

2. Operands (numbers or variables) are directly added to the output. 

3. Operators are pushed onto the stack, but operators with higher precedence are popped first. 

4. Parentheses are handled specially: open parentheses are pushed onto the stack, and when a 

closing parenthesis is encountered, operators are popped until an open parenthesis is found. 

Example: Convert A + B * C to postfix. 

 Read A, add to output: A 

 Read +, push to stack: + 

 Read B, add to output: A B 

 Read *, push to stack: + * 

 Read C, add to output: A B C 

 Pop from the stack to get the final output: A B C * + 

Result: A B C * + 

 

Conclusion 

In conclusion, the stack is a simple yet powerful data structure that plays a crucial role in algorithm 

design and problem-solving. Its LIFO nature makes it ideal for applications like expression evaluation, 

syntax parsing, backtracking problems, and recursive function calls. Understanding the operations 

of push, pop, and peek, along with its applications in expression evaluation and conversion, forms the 

foundation for using stacks effectively in programming. 

 

Queue   

Queue (3 hrs) 

A queue is a linear data structure that follows the First In First Out (FIFO) principle, meaning the first 

element added to the queue is the first one to be removed. This principle makes it suitable for scenarios 

where data needs to be processed in the order it arrives, such as in scheduling tasks, handling requests, 



or buffering data. In a queue, elements are inserted at one end (the rear) and removed from the other 

end (the front). 

 

1. Introduction to Queue 

A queue is a collection of elements with two primary operations: 

 Enqueue: Insert an element at the end (rear) of the queue. 

 Dequeue: Remove an element from the front of the queue. 

Queues are used in scenarios where items need to be processed in a sequential manner, such as: 

 Print queue in printers. 

 Task scheduling in operating systems. 

 Packet buffering in networks. 

 Breadth-first search (BFS) in graph algorithms. 

Queues are also used in various applications such as: 

 Handling requests in web servers. 

 Managing tasks in operating systems. 

 Simulating real-world scenarios like customer service lines. 

 

2. Queue as an Abstract Data Type (ADT) 

A Queue is defined as an Abstract Data Type (ADT), which describes the operations that can be 

performed on a queue, without specifying the details of how they are implemented. The queue as an 

ADT provides the following operations: 

Basic Queue Operations: 

1. Enqueue(element): Adds an element to the back of the queue. 

2. Dequeue(): Removes and returns the front element from the queue. 

3. Front(): Returns the front element without removing it. 

4. isEmpty(): Checks if the queue is empty. 

5. Size(): Returns the number of elements currently in the queue. 

6. Clear(): Removes all elements from the queue. 

Queue Characteristics: 

 FIFO (First In, First Out): The first element enqueued is the first to be dequeued. 



 The queue can be implemented using different underlying data structures such as arrays or 

linked lists. 

 

3. Primitive Operations in Queue 

Enqueue Operation 

 Purpose: Adds an element to the back (rear) of the queue. 

 How it Works: 

o The new element is placed at the rear of the queue. 

o If using an array, the rear index is incremented to add the element. 

o If using a linked list, a new node is created and attached to the rear. 

Example: 

queue = [] 

queue.append(10)  # Enqueue 10 to the queue 

queue.append(20)  # Enqueue 20 to the queue 

Dequeue Operation 

 Purpose: Removes the element from the front of the queue and returns it. 

 How it Works: 

o The element at the front is removed and returned. 

o If using an array, the front index is incremented to remove the element. 

o If using a linked list, the node at the front is removed and the next node becomes the 

new front. 

Example: 

front_element = queue.pop(0)  # Dequeue the front element 

Front Operation 

 Purpose: Retrieves the element at the front of the queue without removing it. 

 How it Works: 

o Returns the element at the front of the queue. 

Example: 

front_element = queue[0]  # View the front element without removing it 



isEmpty Operation 

 Purpose: Checks if the queue is empty. 

 How it Works: 

o Returns True if the queue is empty, otherwise False. 

Example: 

if not queue:  # Check if the queue is empty 

    print("Queue is empty") 

Size Operation 

 Purpose: Returns the number of elements in the queue. 

 How it Works: 

o Returns the count of elements currently in the queue. 

Example: 

queue_size = len(queue)  # Get the number of elements in the queue 

 

4. Linear and Circular Queue and Their Applications 

Linear Queue 

In a linear queue, elements are arranged sequentially, and the first element is at the front, with the last 

element at the rear. However, when elements are dequeued, the space at the front becomes wasted, 

which can lead to inefficient memory utilization, even if there is space at the back. 

 Limitations: 

o Once the rear reaches the end of the array, no new elements can be enqueued even if 

there is space at the front. 

Example of Linear Queue: 

queue = [1, 2, 3, 4] 

queue.pop(0)  # Dequeue the first element 

Circular Queue 

In a circular queue, the queue is treated as circular, meaning the end of the queue wraps around to the 

beginning when space is available. This helps overcome the problem of wasted space in a linear queue, 

making it more efficient for use in situations where space is limited. 

 How it Works: 



o In a circular queue, when the rear reaches the end of the array, it “wraps around” to the 

beginning of the array (if there is space). 

o The front and rear indices are updated in a modular fashion to allow the wraparound. 

Example of Circular Queue: 

queue = [None, None, None, None]  # Size 4 

front = 0 

rear = -1 

Applications of Linear and Circular Queues: 

 Linear Queue: Common in situations where tasks need to be processed in the order they arrive 

(e.g., print spooling, handling HTTP requests). 

 Circular Queue: Often used in applications like buffering, round-robin scheduling, or networking 

protocols (e.g., managing data packets in a buffer). 

 

5. Priority Queue 

A priority queue is a special type of queue where each element is assigned a priority. Elements with 

higher priority are dequeued before elements with lower priority, regardless of their order of insertion. 

In a regular queue, elements are dequeued in the order they are enqueued, but in a priority queue, the 

dequeue operation depends on the priority of the elements. 

Priority Queue Operations: 

 Enqueue(element, priority): Insert an element into the queue with a specified priority. 

 Dequeue(): Remove and return the element with the highest priority. 

How It Works: 

 Elements in the priority queue are sorted based on their priority, either in ascending or 

descending order. 

 Internally, a priority queue can be implemented using a heap data structure (binary heap), 

where the root contains the highest priority element. 

Applications of Priority Queue: 

 Task Scheduling: Used in operating systems to schedule tasks with different priorities. 

 Dijkstra’s Algorithm: Used in graph algorithms like Dijkstra’s shortest path algorithm to manage 

nodes with varying priorities. 

 Huffman Coding: Used in data compression algorithms where characters are assigned priorities 

based on their frequency. 



Example: A simple priority queue could be implemented by sorting elements by priority: 

from queue import PriorityQueue 

 

pq = PriorityQueue() 

pq.put((1, "Task 1"))  # (priority, task) 

pq.put((3, "Task 3")) 

pq.put((2, "Task 2")) 

 

while not pq.empty(): 

    priority, task = pq.get() 

    print(f"Priority {priority}: {task}") 

Priority Queue vs Regular Queue: 

 Regular Queue: Follows FIFO (First In, First Out). 

 Priority Queue: Serves elements based on priority, not the order of insertion. 

 

Conclusion 

The queue is a fundamental linear data structure that follows the FIFO principle. It provides two main 

operations: enqueue (to add an element) and dequeue (to remove an element), and is used in many 

real-world applications, such as task scheduling and buffering. Linear queues are simple but have 

limitations in space utilization, while circular queues efficiently address this issue. Additionally, a priority 

queue allows elements to be processed based on their priority, rather than their arrival order, making it 

useful for scheduling and algorithmic purposes. 

 

List   

List (2 hrs) 

A list is a linear data structure that holds an ordered collection of elements. Unlike arrays, lists are 

flexible in terms of their size, which can grow or shrink dynamically. Lists are used widely in programming 

to store collections of data, such as sequences of items or objects, and provide functionality for easy 

access and manipulation. 

 

1. Introduction to List 



A list is a collection of elements, where each element is positioned in a specific order. The elements can 

be of any data type (integers, strings, objects, etc.), and the list allows insertion, deletion, and access of 

elements at any position. The key operations on lists are: 

 Insert: Add an element to the list. 

 Delete: Remove an element from the list. 

 Access: Retrieve an element at a given position in the list. 

 Search: Find the position of an element in the list. 

Types of Lists: 

1. Singly Linked List: A list where each element points to the next element. 

2. Doubly Linked List: Each element points to both the next and the previous element. 

3. Array-based List: A list implemented using a static array. 

 

2. Static and Dynamic List Structure 

Static List Structure (Array-based List) 

In a static list, the size of the list is predefined and cannot be changed once it is created. It is 

implemented using an array, and elements are stored in contiguous memory locations. This makes 

accessing an element by index very fast, but resizing the list requires creating a new array. 

Key Features: 

 Fixed size (determined at the time of creation). 

 Fast random access to elements via indices. 

 Insertion and deletion of elements can be slow due to the need to shift elements in the array. 

Example: 

# Static list implemented using an array (Python List) 

arr = [1, 2, 3, 4, 5] 

arr[2] = 10  # Modify the element at index 2 

Advantages: 

 Quick access to elements using indices. 

 Less memory overhead compared to dynamic lists. 

Disadvantages: 

 Fixed size (size must be defined upfront). 



 Insertion and deletion are inefficient, as they may require shifting elements. 

 

Dynamic List Structure 

In a dynamic list, the size of the list can grow or shrink as elements are added or removed. This type of 

list is implemented using a dynamic data structure such as a linked list, where memory allocation can be 

adjusted during runtime. 

Key Features: 

 Dynamic sizing: The list can grow or shrink as needed. 

 Memory-efficient: Memory is allocated as the list grows, and freed when elements are removed. 

 Increased flexibility: Elements can be inserted or deleted without the need for shifting other 

elements. 

Example: 

# Dynamic list implemented using a linked list (Python List example) 

dynamic_list = [] 

dynamic_list.append(1)  # Add element to the end of the list 

dynamic_list.append(2) 

Advantages: 

 Flexible size. 

 Efficient insertion and deletion of elements. 

Disadvantages: 

 Slower access time compared to arrays (because elements are not contiguous in memory). 

 Additional memory overhead for storing pointers (in linked lists). 

 

3. Array Implementation of Lists 

In array-based list implementation, the list is implemented using an array (fixed-size or resizable). The 

list elements are stored in contiguous memory locations, allowing constant-time access to elements 

using an index. 

Array-based Implementation Steps: 

1. Initialize the array: Create an array with a fixed or dynamic size to store the list elements. 

2. Insert an element: Insert elements at the end, or at a specified index by shifting elements if 

necessary. 



3. Delete an element: Remove an element by shifting subsequent elements to fill the gap. 

4. Resize the array: If the array reaches its capacity, create a new array with a larger size and copy 

elements to the new array. 

Example: 

# Array-based implementation (Python List) 

array_list = [10, 20, 30, 40] 

array_list.append(50)  # Add 50 at the end 

array_list[2] = 35     # Update the element at index 2 

Limitations: 

 Fixed size: For static arrays, the size must be known ahead of time. 

 Resize overhead: When the array is full and needs resizing, the time complexity can be high. 

 

4. Queue as a List 

A queue can be implemented as a list, where the elements are added at the rear (end) and removed 

from the front (beginning). This structure follows the First In, First Out (FIFO) principle, meaning that the 

first element added is the first to be removed. 

In a queue implemented as a list: 

 Enqueue operation adds an element at the end of the list. 

 Dequeue operation removes an element from the front of the list. 

Queue Operations in List: 

1. Enqueue: Insert at the rear of the list. 

2. Dequeue: Remove from the front of the list. 

3. Peek: View the front element without removing it. 

4. isEmpty: Check if the queue is empty. 

5. Size: Get the number of elements in the queue. 

Example: 

# Implementing Queue using a List (Python) 

queue = [] 

queue.append(10)  # Enqueue 10 

queue.append(20)  # Enqueue 20 



queue.pop(0)      # Dequeue (removes 10) 

Efficiency Considerations: 

 Insertions (Enqueue): Adding an element to the rear of the list is efficient. 

 Deletions (Dequeue): Removing the front element can be inefficient if using a list because 

elements must be shifted. 

To mitigate the inefficiency of dequeue operations, circular queues or deque (double-ended queue) can 

be used, which provide better performance. 

 

Conclusion 

A list is a versatile data structure used to store collections of data. It can be implemented 

in static or dynamic forms, with arrays providing fast access but limited size, and linked lists offering 

flexibility but slower access. A queue can be implemented using a list, providing FIFO behavior. Lists are 

fundamental structures in computing and serve as the foundation for many other data structures. 

Understanding the properties and operations of lists is crucial for designing efficient algorithms and 

systems. 

 

Linked List   

Linked Lists (5 hrs) 

A linked list is a linear data structure consisting of a sequence of elements, where each element points 

to the next one in the sequence. Unlike arrays, linked lists are dynamic in size and can easily grow or 

shrink. Each element in a linked list is called a node, and each node typically contains two parts: 

the data and a reference (or link) to the next node in the list. 

 

1. Introduction to Linked Lists 

A linked list is a collection of nodes where each node contains two parts: 

 Data: The value or the information stored in the node. 

 Link/Pointer: A reference to the next node in the sequence. 

Types of Linked Lists: 

1. Singly Linked List: Each node points to the next node in the sequence. 

2. Doubly Linked List: Each node points to both the next and the previous node. 

3. Circular Linked List: The last node points back to the first node, making it circular. 

Linked List Characteristics: 



 Dynamic size: Unlike arrays, the size of the linked list is not fixed and can grow or shrink 

dynamically. 

 Sequential access: Elements are accessed sequentially, starting from the head node. 

 Efficient insertions and deletions: Insertions and deletions are easier in a linked list because only 

the links need to be updated, and no elements need to be shifted like in an array. 

 

2. Linked List as an Abstract Data Type (ADT) 

A linked list is considered an Abstract Data Type (ADT), which means it defines the operations that can 

be performed on the linked list but does not specify the implementation details. The linked list ADT 

supports the following operations: 

Linked List Operations: 

1. Insert: Add a node to the linked list. 

o At the beginning (Head). 

o At the end (Tail). 

o At a specific position. 

2. Delete: Remove a node from the linked list. 

o From the beginning (Head). 

o From the end (Tail). 

o From a specific position. 

3. Search: Find a node based on its value. 

4. Traverse: Visit each node in the linked list and perform an operation on the data. 

5. Size: Get the number of elements in the list. 

6. IsEmpty: Check if the linked list is empty. 

7. Clear: Remove all nodes from the list. 

 

3. Dynamic Implementation of Linked Lists 

The primary advantage of linked lists is that they are dynamically allocated, meaning they can expand or 

contract in size as needed, without the need to predefine a size like arrays. This flexibility is possible 

because each node contains a reference to the next node, and memory for each node is allocated when 

it is created. 

Memory Allocation: 



 Each node is dynamically allocated in memory at runtime, which ensures efficient use of 

memory. 

 Memory is freed when nodes are deleted, ensuring there is no memory waste. 

Structure of a Singly Linked List: 

A singly linked list typically has a head pointer that points to the first node. Each node has two 

components: 

 Data: Stores the information. 

 Next: Points to the next node in the list (or null if it is the last node). 

Example (Singly Linked List): 

class Node: 

    def __init__(self, data=None): 

        self.data = data  # Data stored in the node 

        self.next = None  # Pointer to the next node 

 

class LinkedList: 

    def __init__(self): 

        self.head = None  # Initialize the list with an empty head 

 

    def insert_at_end(self, data): 

        new_node = Node(data)  # Create a new node with data 

        if not self.head: 

            self.head = new_node  # If the list is empty, make the new node the head 

        else: 

            current = self.head 

            while current.next: 

                current = current.next  # Traverse to the end of the list 

            current.next = new_node  # Add the new node at the end 

 

4. Insertion and Deletion of Nodes 



Insertion: 

Insertion operations in a linked list are straightforward since we can easily adjust the pointers to insert a 

new node. 

1. Insert at the beginning: 

o Create a new node. 

o Point the new node’s next to the current head. 

o Update the head to point to the new node. 

2. Insert at the end: 

o Traverse to the last node. 

o Point the last node’s next to the new node. 

3. Insert at a specific position: 

o Traverse the list to the desired position. 

o Point the previous node’s next to the new node, and the new node’s next to the next 

node. 

Deletion: 

Deleting a node requires adjusting the next pointers to remove a node from the list. 

1. Delete from the beginning: 

o Point the head to the second node (i.e., head = head.next). 

2. Delete from the end: 

o Traverse to the second-to-last node. 

o Set the second-to-last node’s next to None. 

3. Delete from a specific position: 

o Traverse to the node before the one to be deleted. 

o Point the previous node’s next to the node after the one to be deleted. 

Example (Insertion at the Beginning): 

def insert_at_beginning(self, data): 

    new_node = Node(data)  # Create a new node 

    new_node.next = self.head  # Point new node to the current head 

    self.head = new_node  # Update the head to point to the new node 



 

5. Linked Stacks and Queues 

A stack and a queue are abstract data types that can be efficiently implemented using linked lists. 

Linked Stack: 

A stack follows the Last In, First Out (LIFO) principle, where elements are added and removed from the 

same end (the top). In a linked stack: 

 The top is the head node. 

 Push operation inserts a new node at the head. 

 Pop operation removes the node from the head. 

Example (Linked Stack): 

class Stack: 

    def __init__(self): 

        self.head = None 

 

    def push(self, data): 

        new_node = Node(data)  # Create new node 

        new_node.next = self.head  # Point new node to the current head 

        self.head = new_node  # Update the head to the new node 

 

    def pop(self): 

        if self.head: 

            popped_data = self.head.data 

            self.head = self.head.next  # Update head to the next node 

            return popped_data 

Linked Queue: 

A queue follows the First In, First Out (FIFO) principle, where elements are added at the rear and 

removed from the front. In a linked queue: 

 The front is the head node. 

 The rear is the last node. 



 Enqueue operation adds a node at the rear. 

 Dequeue operation removes a node from the front. 

Example (Linked Queue): 

class Queue: 

    def __init__(self): 

        self.front = self.rear = None 

 

    def enqueue(self, data): 

        new_node = Node(data) 

        if not self.rear: 

            self.front = self.rear = new_node 

            return 

        self.rear.next = new_node 

        self.rear = new_node 

 

    def dequeue(self): 

        if not self.front: 

            return None 

        dequeued_data = self.front.data 

        self.front = self.front.next 

        return dequeued_data 

 

6. Doubly Linked Lists and Its Advantages 

A doubly linked list is a variation of the singly linked list where each node contains two pointers: one 

pointing to the next node and another pointing to the previous node. This allows for more flexible 

traversal in both directions (forward and backward). 

Structure of a Doubly Linked List: 

 Data: Stores the data element. 

 Next: Points to the next node in the list. 



 Prev: Points to the previous node in the list. 

Advantages of Doubly Linked Lists: 

 Bidirectional traversal: Allows traversal in both directions, making it easier to navigate the list. 

 Efficient deletions: Deleting a node can be done more efficiently, as both previous and next 

nodes are directly accessible. 

 Easier insertion and deletion at both ends: Insertion and deletion operations at both the 

beginning and the end are simpler compared to a singly linked list. 

Example (Doubly Linked List): 

class DoublyNode: 

    def __init__(self, data=None): 

        self.data = data 

        self.next = None 

        self.prev = None 

 

class DoublyLinkedList: 

    def __init__(self): 

        self.head = None 

 

    def insert_at_end(self, data): 

        new_node = DoublyNode(data) 

        if not self.head: 

            self.head = new_node 

        else: 

            current = self.head 

            while current.next: 

                current = current.next 

            current.next = new_node 

            new_node.prev = current 

 



Conclusion 

Linked lists are dynamic data structures that consist of nodes connected by pointers. They offer flexibility 

in terms of size and efficient insertion/deletion of nodes. Singly linked lists are simple but allow only 

unidirectional traversal, while doubly linked lists enable bidirectional traversal 

 

Recursion   

Recursion (4 hrs) 

Recursion is a programming technique where a function calls itself in order to solve a problem. This 

method is widely used in problems where the solution can be broken down into smaller subproblems 

that have a similar structure to the original problem. 

 

1. Introduction to Recursion 

Recursion is a technique in computer science in which a function solves a problem by solving smaller 

instances of the same problem. The function continues to call itself until it reaches a base case, at which 

point it stops and begins returning the results. Recursive functions are defined in terms of themselves, 

and they are generally used for problems that can be divided into similar subproblems. 

Basic Structure of Recursion: 

A recursive function typically has two key components: 

1. Base Case: The condition under which the function stops calling itself and returns a value. It 

ensures that the recursion does not continue indefinitely. 

2. Recursive Case: The part of the function where it calls itself with a simpler version of the 

problem, gradually breaking the problem down until the base case is reached. 

 

2. Principle of Recursion 

The principle of recursion is based on the idea that a function can solve a problem by solving smaller 

instances of the same problem. It works through two phases: 

 Recursive Phase: The function calls itself with a simpler or reduced version of the problem. 

 Base Case Phase: When the function reaches a point where the problem is simple enough to be 

solved directly, thus terminating the recursion. 

Example (Factorial Calculation): 

The factorial of a number n is the product of all positive integers less than or equal to n: 

n!=n×(n−1)×(n−2)×...×1 

The factorial can be defined recursively as: 



n!=n×(n−1)! 

And the base case would be: 

0!=1 

Recursive Function: 

def factorial(n): 

    if n == 0: 

        return 1  # Base case 

    else: 

        return n * factorial(n-1)  # Recursive case 

 

3. Recursion vs. Iteration 

Recursion: 

 Recursion involves a function calling itself until it reaches the base case. 

 Recursion can lead to simpler, more readable code for problems that naturally fit a recursive 

structure, such as tree traversal or computing factorials. 

 However, recursion can be less efficient in terms of memory usage and performance, as each 

function call adds a new layer to the call stack. 

Iteration: 

 Iteration uses loops to repeat a set of instructions until a condition is met. 

 It is often more efficient than recursion, particularly in terms of memory usage, as it does not 

require maintaining a call stack. 

 Iteration may require more complex logic when dealing with problems that have a recursive 

structure. 

Comparison: 

Aspect Recursion Iteration 

Memory 

Usage 

Uses stack for each function call Uses loop variable(s) only 



Aspect Recursion Iteration 

Code 

Simplicity 

Simple code for recursive problems More complex for recursive 

problems 

Efficiency Can be less efficient (stack overhead) Often more efficient 

Use Case Ideal for tree-based and divide-and-conquer 

problems 

Ideal for simple repetitive tasks 

 

4. Recursion Examples 

Tower of Hanoi (TOH) 

The Tower of Hanoi problem involves moving a stack of disks from one rod to another, obeying three 

rules: 

1. Only one disk can be moved at a time. 

2. A larger disk cannot be placed on top of a smaller disk. 

3. Only the topmost disk of a stack can be moved. 

Recursive Solution to Tower of Hanoi: 

The problem can be solved recursively by breaking it down into three steps: 

1. Move n−1 disks from the source rod to the auxiliary rod. 

2. Move the largest disk from the source rod to the destination rod. 

3. Move the n−1 disks from the auxiliary rod to the destination rod. 

def tower_of_hanoi(n, source, auxiliary, destination): 

    if n == 1: 

        print(f"Move disk 1 from {source} to {destination}") 

    else: 

        tower_of_hanoi(n-1, source, destination, auxiliary) 

        print(f"Move disk {n} from {source} to {destination}") 

        tower_of_hanoi(n-1, auxiliary, source, destination) 

 



# Example usage: 

tower_of_hanoi(3, 'A', 'B', 'C') 

Fibonacci Series 

The Fibonacci sequence is defined as: 

F(n)=F(n−1)+F(n−2) 

With base cases: 

F(0)=0,F(1)=1 

Recursive Solution for Fibonacci: 

def fibonacci(n): 

    if n == 0: 

        return 0  # Base case 

    elif n == 1: 

        return 1  # Base case 

    else: 

        return fibonacci(n-1) + fibonacci(n-2)  # Recursive case 

 

# Example usage: 

print(fibonacci(5))  # Output: 5 

 

5. Applications of Recursion 

Recursion is widely used in various fields of computer science, especially in problems where a task can 

be broken down into smaller subproblems that are similar to the original problem. 

Common Applications: 

1. Tree Traversal: Recursion is ideal for traversing trees (binary trees, etc.). Examples include in-

order, pre-order, and post-order traversal. 

2. Divide and Conquer Algorithms: Problems like Merge Sort and Quick Sort use recursion to 

divide the problem into smaller subproblems and combine the results. 

3. Graph Traversal: Recursion is used in graph traversal algorithms like Depth-First Search (DFS). 

4. Backtracking Algorithms: Problems like N-Queens, Sudoku Solver, and Maze Solving often use 

recursion. 



5. Dynamic Programming: Recursion is used in problems that require breaking down a problem 

into overlapping subproblems, such as in Fibonacci sequence calculation or Knapsack problem. 

 

6. Search Tree 

A search tree is a tree data structure in which each node stores a value greater than all values in its left 

subtree and smaller than all values in its right subtree. Searching in a search tree can be efficiently 

performed using recursion. 

Recursive Search in a Binary Search Tree (BST): 

To search for a value in a binary search tree: 

1. If the tree is empty, return None. 

2. If the value is equal to the root, return the root. 

3. If the value is smaller than the root, recursively search the left subtree. 

4. If the value is greater than the root, recursively search the right subtree. 

class Node: 

    def __init__(self, value): 

        self.value = value 

        self.left = None 

        self.right = None 

 

def search(root, value): 

    if root is None or root.value == value: 

        return root 

    if value < root.value: 

        return search(root.left, value) 

    return search(root.right, value) 

 

7. Conclusion 

Recursion is a powerful and elegant tool for solving problems that can be broken down into smaller 

subproblems. It is particularly useful for tasks involving hierarchical structures like trees and graphs, as 

well as for problems that can be solved through a divide-and-conquer approach. While recursion can 



lead to clean, easy-to-understand solutions, it is important to understand when it is appropriate to use 

recursion over iteration, as it can be less efficient in terms of memory usage and performance. 

 

Trees   

Trees (5 hrs) 

A tree is a hierarchical data structure used in computer science to represent relationships among 

elements in a way that mimics natural hierarchies. Trees consist of nodes connected by edges, and they 

are widely used for searching, sorting, and representing hierarchical data, such as organizational 

structures, file systems, and more. 

 

1. Introduction to Trees 

In computer science, a tree is a collection of nodes where each node contains a value and has references 

(or pointers) to its child nodes. A tree structure is used for various applications such as representing 

hierarchical structures, expression parsing, database indexing, and more. 

Basic Tree Terminology: 

 Root: The top node of the tree, which does not have any parent. 

 Node: A fundamental unit that stores data and links to child nodes. 

 Edge: A connection between two nodes. 

 Leaf: A node with no children. 

 Subtree: A tree formed by a node and all of its descendants. 

 Parent: A node that has child nodes. 

 Child: A node directly connected to another node when moving away from the root. 

 Sibling: Nodes that share the same parent. 

Types of Trees: 

 Binary Tree: A tree where each node has at most two children (left and right). 

 Binary Search Tree (BST): A binary tree where the left child is smaller than the parent node, and 

the right child is larger. 

 AVL Tree: A self-balancing binary search tree where the height of the two child subtrees of every 

node differs by no more than one. 

 B-Tree: A self-balancing search tree designed for systems that read and write large blocks of 

data. 

 



2. Basic Operations in Binary Tree 

A binary tree is a tree where each node has at most two children, typically referred to as the left child 

and the right child. Basic operations performed on binary trees include: 

Insertion: 

 Inserting a node into a binary tree generally involves finding the appropriate place for the new 

node. In a binary search tree, for example, the node is inserted in the correct position based on 

its value. 

class TreeNode: 

    def __init__(self, value): 

        self.value = value 

        self.left = None 

        self.right = None 

 

def insert(root, value): 

    if root is None: 

        return TreeNode(value) 

    if value < root.value: 

        root.left = insert(root.left, value) 

    else: 

        root.right = insert(root.right, value) 

    return root 

Search: 

 Searching for a node in a binary search tree involves comparing the value to be searched with 

the root node. Based on the comparison, we either move left or right recursively. 

def search(root, value): 

    if root is None or root.value == value: 

        return root 

    if value < root.value: 

        return search(root.left, value) 

    return search(root.right, value) 



Deletion: 

 Deletion in a binary tree can be complex. If the node to be deleted has: 

o No children: Simply remove the node. 

o One child: Replace the node with its child. 

o Two children: Replace the node with its in-order successor (or predecessor). 

 

3. Tree Search and Insertion/Deletion 

Tree Search: 

 Search is the process of finding a specific value in the tree. 

 In a binary search tree, the search follows the property that all nodes on the left subtree are 

smaller and all nodes on the right subtree are larger than the root node. This allows for efficient 

search operations. 

Insertion and Deletion: 

 Insertion and Deletion in a binary search tree are recursive operations that maintain the tree’s 

structure. Insertion involves placing the new value in the correct position, while deletion 

involves re-arranging the tree to maintain its properties. 

 

4. Binary Tree Traversals 

Tree traversal is the process of visiting all the nodes in a tree and performing some operation on each. 

There are three common types of traversals in a binary tree: 

1. Pre-order Traversal: 

In pre-order traversal, the root node is processed first, followed by the left subtree, and then the right 

subtree. 

def pre_order_traversal(root): 

    if root: 

        print(root.value, end=' ') 

        pre_order_traversal(root.left) 

        pre_order_traversal(root.right) 

2. In-order Traversal: 

In in-order traversal, the left subtree is processed first, followed by the root node, and then the right 

subtree. This traversal is particularly useful in binary search trees, as it processes the nodes in ascending 

order. 



def in_order_traversal(root): 

    if root: 

        in_order_traversal(root.left) 

        print(root.value, end=' ') 

        in_order_traversal(root.right) 

3. Post-order Traversal: 

In post-order traversal, the left subtree is processed first, followed by the right subtree, and then the 

root node. This is useful for tasks like deletion, where you need to delete the children before the parent. 

def post_order_traversal(root): 

    if root: 

        post_order_traversal(root.left) 

        post_order_traversal(root.right) 

        print(root.value, end=' ') 

 

5. Tree Height, Level, and Depth 

 Height of a Tree: The height of a tree is the length of the longest path from the root to any leaf. 

The height of a tree with no nodes is considered to be -1, and the height of a tree with only one 

node is 0. 

 Level of a Node: The level of a node is the number of edges from the root to the node. 

 Depth of a Node: The depth of a node is the same as the level of the node. It represents the 

distance from the root to the node. 

def height(root): 

    if root is None: 

        return -1 

    left_height = height(root.left) 

    right_height = height(root.right) 

    return max(left_height, right_height) + 1 

 

6. Balanced Trees: AVL Trees 



A balanced tree is a tree structure in which the height of the left and right subtrees of any node differ by 

at most one. This ensures that the tree remains balanced, leading to more efficient operations (search, 

insertion, and deletion). 

AVL Trees: 

An AVL tree (named after its inventors Adelson-Velsky and Landis) is a self-balancing binary search tree. 

It ensures that the height difference between the left and right subtrees of any node is no more than 

one. If this balance property is violated, rotations are used to restore balance. 

Balancing Algorithm: 

 Left Rotation: Used when the right subtree is taller than the left. 

 Right Rotation: Used when the left subtree is taller than the right. 

 Left-Right Rotation: A combination of left and right rotations used when there is a left-heavy 

subtree on the right side. 

 Right-Left Rotation: A combination of right and left rotations used when there is a right-heavy 

subtree on the left side. 

# Simple example of rotations in AVL trees (not a complete implementation) 

def left_rotate(x): 

    y = x.right 

    x.right = y.left 

    y.left = x 

    return y 

 

7. Huffman Algorithm 

The Huffman coding algorithm is used for lossless data compression. It assigns variable-length codes to 

input characters, with shorter codes assigned to more frequent characters. The algorithm uses a binary 

tree, known as a Huffman tree, to assign these codes. 

Steps: 

1. Build a frequency table for the characters. 

2. Construct a priority queue (min-heap) where the lowest frequencies are given the highest 

priority. 

3. Build the Huffman tree by repeatedly merging the two smallest trees in the queue. 

4. Assign binary codes based on the tree structure. 

 



8. Game Trees 

A game tree is a tree representation of possible moves in a game. The nodes represent game states, and 

the edges represent player moves. Game trees are widely used in algorithms for games like chess, 

checkers, and tic-tac-toe. 

Minimax Algorithm: 

The minimax algorithm is used to minimize the possible loss for a worst-case scenario. It is a recursive 

algorithm for choosing the optimal move in a two-player game. The algorithm simulates all possible 

moves and selects the best one. 

 

9. B-Trees 

A B-tree is a self-balancing tree data structure that maintains sorted data and allows for efficient 

insertion, deletion, and search operations. B-trees are used in databases and file systems due to their 

efficiency in handling large amounts of data. 

B-tree Properties: 

 Each node can have multiple children (more than two). 

 Nodes store multiple keys, which help in narrowing down searches. 

 All leaf nodes are at the same level, ensuring balanced growth. 

 

Conclusion 

Trees are a fundamental data structure that plays a crucial role in organizing and accessing data 

efficiently. Operations like search, insertion, and deletion are optimized in tree structures such as binary 

trees and B-trees. Advanced topics like AVL trees, Huffman coding, and game trees provide practical 

solutions for more complex computational problems, ensuring faster processing, better data 

management, and improved performance across a wide range of applications. 

 

Sorting   

Sorting (5 hrs) 

Sorting is a fundamental operation in computer science and programming, used to arrange elements in a 

specific order (either ascending or descending). Sorting plays an essential role in many applications, such 

as searching, indexing, data processing, and optimizing algorithms. 

 

1. Introduction to Sorting 



Sorting is the process of rearranging a sequence of elements in a particular order. The order can be 

numerical, alphabetical, or based on custom criteria. Sorting is crucial for efficient data retrieval, 

optimization, and simplification of problems. 

Types of Sorting Algorithms: 

 Internal Sorting: The data to be sorted fits entirely into the computer’s memory. 

 External Sorting: The data is too large to fit into memory and must be stored on external storage 

(e.g., disk). 

 

2. Internal and External Sorting 

Internal Sorting: 

 This type of sorting occurs when the entire dataset is small enough to be held in the computer’s 

main memory (RAM). 

 Algorithms used for internal sorting include Quick Sort, Merge Sort, Insertion Sort, Selection 

Sort, and Heap Sort. 

External Sorting: 

 External sorting is necessary when the dataset is too large to fit into memory. Data is stored in 

external storage like hard drives, and a portion of data is loaded into memory, sorted, and then 

written back to disk. 

 A typical use case of external sorting is when dealing with large databases and files that cannot 

be processed in memory. 

 A popular algorithm for external sorting is the Merge Sort as it works efficiently with external 

data by using a “divide and conquer” approach. 

 

3. Insertion Sort 

Insertion Sort: 

 Concept: Insertion sort works similarly to the way you sort playing cards. It picks an element and 

places it in the correct position among the already sorted elements. 

 Procedure: The algorithm starts with the second element, compares it with the first, and inserts 

it in the correct position. It continues for each subsequent element until the entire array is 

sorted. 

Time Complexity: 

 Best Case: O(n) (when the array is already sorted). 

 Worst Case: O(n2) (when the array is in reverse order). 



 Average Case: O(n2). 

def insertion_sort(arr): 

    for i in range(1, len(arr)): 

        key = arr[i] 

        j = i - 1 

        while j >= 0 and key < arr[j]: 

            arr[j + 1] = arr[j] 

            j -= 1 

        arr[j + 1] = key 

 

4. Selection Sort 

Selection Sort: 

 Concept: Selection sort works by repeatedly finding the minimum element from the unsorted 

portion and swapping it with the first unsorted element. 

 Procedure: In each pass, it selects the smallest (or largest) element from the unsorted portion 

and moves it to the sorted portion. 

Time Complexity: 

 Best, Worst, and Average Case: O(n2) as it always performs the same number of comparisons 

regardless of the initial order of elements. 

def selection_sort(arr): 

    for i in range(len(arr)): 

        min_idx = i 

        for j in range(i + 1, len(arr)): 

            if arr[j] < arr[min_idx]: 

                min_idx = j 

        arr[i], arr[min_idx] = arr[min_idx], arr[i] 

 

5. Exchange Sort (Bubble Sort) 

Bubble Sort: 



 Concept: Bubble sort works by comparing adjacent elements and swapping them if they are in 

the wrong order. The process is repeated until no swaps are needed. 

 Procedure: This sorting algorithm “bubbles” the largest element to the top in each pass, hence 

the name. 

Time Complexity: 

 Best Case: O(n) (when the list is already sorted). 

 Worst and Average Case: O(n2). 

def bubble_sort(arr): 

    n = len(arr) 

    for i in range(n): 

        swapped = False 

        for j in range(0, n-i-1): 

            if arr[j] > arr[j+1]: 

                arr[j], arr[j+1] = arr[j+1], arr[j] 

                swapped = True 

        if not swapped: 

            break 

 

6. Quick Sort 

Quick Sort: 

 Concept: Quick Sort is a “divide and conquer” algorithm that works by selecting a pivot element, 

partitioning the array around the pivot, and recursively sorting the subarrays. 

 Procedure: 

o Choose a pivot element. 

o Partition the array into two subarrays: one with elements smaller than the pivot, and the 

other with elements greater than the pivot. 

o Recursively apply the quick sort to the subarrays. 

Time Complexity: 

 Best and Average Case: O(nlog⁡n) 

 Worst Case: O(n2) (when the pivot is the smallest or largest element in each partition). 



def quick_sort(arr): 

    if len(arr) <= 1: 

        return arr 

    pivot = arr[len(arr) // 2] 

    left = [x for x in arr if x < pivot] 

    middle = [x for x in arr if x == pivot] 

    right = [x for x in arr if x > pivot] 

    return quick_sort(left) + middle + quick_sort(right) 

 

7. Merge Sort 

Merge Sort: 

 Concept: Merge Sort is another “divide and conquer” algorithm that divides the array into two 

halves, sorts them, and then merges the sorted halves. 

 Procedure: 

o Recursively divide the array into two halves. 

o Merge the sorted halves back together. 

Time Complexity: 

 Best, Worst, and Average Case: O(nlog⁡n) 

def merge_sort(arr): 

    if len(arr) <= 1: 

        return arr 

    mid = len(arr) // 2 

    left = merge_sort(arr[:mid]) 

    right = merge_sort(arr[mid:]) 

    return merge(left, right) 

 

def merge(left, right): 

    result = [] 

    i = j = 0 



    while i < len(left) and j < len(right): 

        if left[i] < right[j]: 

            result.append(left[i]) 

            i += 1 

        else: 

            result.append(right[j]) 

            j += 1 

    result.extend(left[i:]) 

    result.extend(right[j:]) 

    return result 

 

8. Radix Sort 

Radix Sort: 

 Concept: Radix Sort is a non-comparative sorting algorithm that processes numbers digit by 

digit, from the least significant digit to the most significant. 

 Procedure: 

o Sort the elements based on each digit starting from the least significant digit using a 

stable sorting algorithm (like Counting Sort). 

Time Complexity: 

 Best, Worst, and Average Case: O(nk), where n is the number of elements and k is the number of 

digits. 

 

9. Shell Sort 

Shell Sort: 

 Concept: Shell Sort is an improvement on Insertion Sort that allows the exchange of items that 

are far apart. 

 Procedure: It starts by sorting pairs of elements far apart and gradually reducing the gap 

between the elements to be compared. 

Time Complexity: 

 Best Case: O(nlog⁡n) (for optimal gap sequence). 



 Worst Case: O(n2) (for poor gap sequences). 

 

10. Binary Sort 

Binary Sort: 

 Concept: Binary Sort is a variation of the Insertion Sort where binary search is used to find the 

correct position to insert each element, which reduces the number of comparisons. 

 Procedure: 

o Use binary search to find the position of the element in the sorted portion and insert it 

accordingly. 

 

11. Heap Sort (as a Priority Queue) 

Heap Sort: 

 Concept: Heap Sort is based on the heap data structure (usually a binary heap) that represents a 

complete binary tree. Heap Sort can be used to sort data by treating it as a priority queue. 

 Procedure: 

o Convert the array into a max-heap. 

o Swap the root (maximum element) with the last element. 

o Heapify the root, reducing the heap size by 1, and repeat until the heap is empty. 

Time Complexity: 

 Best, Worst, and Average Case: O(nlog⁡n) 

def heapify(arr, n, i): 

    largest = i 

    left = 2 * i + 1 

    right = 2 * i + 2 

 

    if left < n and arr[left] > arr[largest]: 

        largest = left 

    if right < n and arr[right] > arr[largest]: 

        largest = right 

    if largest != i: 



        arr[i], arr[largest] = arr[largest], arr[i] 

        heapify(arr, n, largest) 

 

def heap_sort(arr): 

    n = len(arr) 

    for i in range(n//2 - 1, -1, -1): 

        heapify(arr, n, i) 

    for i in range(n-1, 0, -1): 

        arr[i], arr[0] = arr[0], arr[i] 

        heapify(arr, i, 0) 

 

12. Efficiency of Sorting 

The efficiency of sorting algorithms is commonly measured by their time complexity and space 

complexity. Time complexity is the number of comparisons or operations needed to sort the data, while 

space complexity is the amount of memory used by the algorithm. 

Big O Notation: 

 Big O notation is used to describe the upper bound of an algorithm’s runtime in terms of the 

size of the input data. 

 For sorting algorithms: 

o O(n^2): Selection Sort, Insertion Sort, Bubble Sort. 

o O(n log n): Merge Sort, Quick Sort, Heap Sort, Shell Sort. 

o O(nk): Radix Sort (where k is the number of digits). 

 

Conclusion 

Sorting is a core component of many computational tasks, and understanding different sorting 

algorithms helps in choosing the right one for a given situation. Algorithms like Quick Sort, Merge Sort, 

and Heap Sort offer efficient solutions, while simpler ones like Insertion Sort and Selection Sort are 

useful for small datasets or when simplicity is preferred. Optimizing sorting algorithms for specific use 

cases can greatly improve performance. 

 

Searching   



Searching (5 hrs) 

Searching is a fundamental concept in computer science and algorithms, aimed at finding specific data 

within a structure or database. A wide variety of searching techniques exist, each suited for different 

types of data structures and use cases. The goal of a searching algorithm is to efficiently locate an 

element in a dataset or verify whether the element is present or not. 

 

1. Introduction to Search Techniques 

Searching is the process of finding a specific item within a collection of data. Different types of search 

algorithms are used depending on the data structure being searched and the type of data. In some 

cases, searching can be done sequentially, while in other cases, more efficient algorithms like binary 

search or hashing are employed. 

Essentials of Searching: 

 Search Key: The element you’re searching for. 

 Search Space: The set of elements in which you’re searching. 

 Search Outcome: Whether the element is found or not. Typically, the outcome involves 

returning the index of the element or an indication that the element does not exist in the 

collection. 

Searching algorithms vary in efficiency, depending on the structure of the data and the size of the 

dataset. 

 

2. Sequential Search (Linear Search) 

Concept: 

 Sequential Search is the simplest searching technique where the algorithm scans each element 

in the collection, one by one, until the desired element is found or the entire list is searched. 

 Procedure: Start from the first element, compare it with the search key, move to the next 

element, and repeat until either the element is found or the end of the list is reached. 

Time Complexity: 

 Worst Case: O(n), when the element is at the end of the list or not present at all. 

 Best Case: O(1), if the element is at the beginning of the list. 

 Average Case: O(n). 

def sequential_search(arr, target): 

    for index, value in enumerate(arr): 

        if value == target: 



            return index  # Return index if found 

    return -1  # Return -1 if not found 

 

3. Binary Search 

Concept: 

 Binary Search is an efficient searching algorithm that works on sorted data structures. It 

repeatedly divides the search space in half until the target element is found. 

 Procedure: 

1. Begin by comparing the target with the middle element of the array. 

2. If the target is equal to the middle element, return its index. 

3. If the target is smaller than the middle element, continue the search in the left half. 

4. If the target is larger, continue the search in the right half. 

Precondition: 

 The array or list must be sorted in ascending or descending order before applying binary search. 

Time Complexity: 

 Worst Case: O(log⁡n), as the search space is halved in each iteration. 

 Best Case: O(1), if the middle element is the target. 

 Average Case: O(log⁡n). 

def binary_search(arr, target): 

    left, right = 0, len(arr) - 1 

    while left <= right: 

        mid = (left + right) // 2 

        if arr[mid] == target: 

            return mid  # Target found 

        elif arr[mid] < target: 

            left = mid + 1  # Search right half 

        else: 

            right = mid - 1  # Search left half 

    return -1  # Target not found 



 

4. Tree Search 

Concept: 

 Tree Search involves searching through a tree data structure, where each node contains a value 

and references to child nodes. 

 Binary Search Tree (BST) is a common tree used for efficient searching. In a BST, for any node: 

o The left child contains smaller values than the node. 

o The right child contains larger values than the node. 

Time Complexity: 

 Best Case: O(log⁡n), for a balanced tree. 

 Worst Case: O(n), for a skewed tree (essentially a linked list). 

Procedure: 

1. Start from the root of the tree. 

2. Compare the target with the current node. 

3. Recursively search the left or right subtree depending on whether the target is smaller or larger 

than the current node. 

class TreeNode: 

    def __init__(self, value): 

        self.value = value 

        self.left = None 

        self.right = None 

 

def tree_search(root, target): 

    if root is None or root.value == target: 

        return root 

    if target < root.value: 

        return tree_search(root.left, target) 

    return tree_search(root.right, target) 

 



5. General Search Tree 

Concept: 

 General Search Tree (GST) is a type of tree where each node can have an arbitrary number of 

children, unlike Binary Search Trees (BSTs) which only have two children (left and right). 

 Application: General search trees are used in scenarios where the data has a hierarchical 

structure with more complex relationships than just two branches. 

Efficiency: 

 Searching in a General Search Tree may require exploring multiple branches, which can affect the 

efficiency. Therefore, optimizing the tree structure and balancing the tree is important for 

improving performance. 

 

6. Hashing: Hash Function and Hash Tables 

Hashing: 

 Hashing is a technique used to efficiently store and search data by mapping keys to specific 

locations in an array (called a hash table) using a hash function. 

 Hash Function: A hash function takes an input (or “key”) and returns an integer value, which is 

used as an index to store the data in a hash table. 

Hash Table: 

 A hash table is an array-like structure used to store data, where each key is mapped to a specific 

index in the array using the hash function. 

Collision Resolution: 

 Collision occurs when two keys hash to the same index. There are different techniques to handle 

collisions: 

1. Chaining: Store multiple elements at the same index using a linked list. 

2. Open Addressing: Find another open slot in the hash table using methods such as linear 

probing, quadratic probing, or double hashing. 

Time Complexity: 

 Average Case: O(1) for both searching and insertion if collisions are minimized. 

 Worst Case: O(n) if many collisions occur and the hash table becomes overloaded. 

class HashTable: 

    def __init__(self, size): 

        self.table = [None] * size 



     

    def hash_function(self, key): 

        return key % len(self.table) 

     

    def insert(self, key, value): 

        index = self.hash_function(key) 

        if self.table[index] is None: 

            self.table[index] = [(key, value)] 

        else: 

            self.table[index].append((key, value)) 

 

    def search(self, key): 

        index = self.hash_function(key) 

        if self.table[index] is not None: 

            for k, v in self.table[index]: 

                if k == key: 

                    return v 

        return None 

 

7. Efficiency Comparisons of Different Search Techniques 

1. Sequential Search: 

 Best Case: O(1) 

 Worst Case: O(n) 

 Average Case: O(n) 

 Efficiency: Very inefficient for large datasets, but simple and works on unsorted data. 

2. Binary Search: 

 Best Case: O(1) 

 Worst Case: O(log⁡n) 

 Average Case: O(log⁡n) 



 Efficiency: Very efficient for sorted data. Much faster than sequential search for large datasets. 

3. Tree Search (Binary Search Tree): 

 Best Case: O(log⁡n) 

 Worst Case: O(n) (for skewed tree) 

 Average Case: O(log⁡n) 

 Efficiency: Efficient if the tree is balanced. However, can degrade if the tree becomes 

unbalanced. 

4. Hashing: 

 Best Case: O(1) 

 Worst Case: O(n) (if all keys hash to the same index) 

 Average Case: O(1) 

 Efficiency: Very efficient for large datasets with good hash functions and collision resolution 

techniques. 

 

Conclusion 

Searching is a crucial aspect of algorithmic problem-solving. Depending on the structure of the data and 

the requirements of the problem, different search techniques offer varying trade-offs between time 

complexity and space complexity. Binary search is highly efficient for sorted arrays, while hashing can 

provide constant time lookups for key-value pairs. Tree-based searches work well for hierarchical data 

but need balanced structures for optimal performance. Understanding these techniques helps in 

selecting the right one for any given situation, ensuring efficient data retrieval and system performance. 

 

Graphs   

Graphs (5 hrs) 

Graphs are fundamental data structures used to model relationships or connections between objects. 

They are used extensively in various fields such as computer science, social networks, transportation 

networks, and many others. Graphs provide a versatile way to represent data and solve problems related 

to connectivity, shortest paths, and network flow. 

 

1. Introduction to Graphs 

A graph is a collection of vertices (also called nodes) and edges (connections or links between the 

nodes). Each edge connects two vertices and can either be directed or undirected. 

Key Terminology: 



 Vertex (Node): A fundamental unit of a graph, representing an entity. 

 Edge: A connection between two vertices, representing the relationship between them. 

 Adjacent: Two vertices are adjacent if they are connected by an edge. 

 Degree: The number of edges incident to a vertex. In an undirected graph, it’s the number of 

edges connected to a vertex. In a directed graph, it can be divided into in-degree (edges coming 

into the vertex) and out-degree (edges going out of the vertex). 

 Path: A sequence of vertices connected by edges. 

 Cycle: A path where the first and last vertices are the same, and no other vertex is repeated. 

Graphs can be classified into different types based on the edges and their properties. 

 

2. Graphs as an Abstract Data Type (ADT) 

A Graph ADT defines a set of operations that can be performed on a graph. These operations typically 

include: 

1. Adding a vertex: Insert a new node into the graph. 

2. Adding an edge: Create a connection between two vertices. 

3. Removing a vertex: Delete a node from the graph. 

4. Removing an edge: Delete a connection between two vertices. 

5. Checking adjacency: Determine if two vertices are connected by an edge. 

6. Traversing: Explore or visit all vertices and edges of the graph in some systematic way. 

Graph implementations can be done using: 

 Adjacency Matrix: A 2D array where the element at row i and column j is 1 if there is an edge 

between vertex i and vertex j. 

 Adjacency List: A list where each vertex stores a list of vertices adjacent to it. 

 

3. Transitive Closure 

The Transitive Closure of a graph is a way of representing reachability in the graph. It tells you whether a 

path exists between two vertices, either directly or indirectly. 

In a directed graph, the transitive closure of the graph is a matrix where each element (i, j) indicates 

whether there is a path from vertex i to vertex j. 

Application: 

 Path Finding: Used to determine if two nodes are connected, regardless of the path length. 



 Warshall’s Algorithm: An algorithm used to compute the transitive closure of a directed graph. 

 

4. Warshall’s Algorithm 

Warshall’s Algorithm is an efficient algorithm for finding the transitive closure of a directed graph. It 

works by updating the adjacency matrix to reflect reachability between all pairs of vertices. 

Procedure: 

1. Start with the adjacency matrix of the graph. 

2. For each intermediate vertex k, update the matrix by checking if a path exists from vertex i to 

vertex j through vertex k. 

3. Repeat the process for all intermediate vertices. 

Time Complexity: O(V3), where V is the number of vertices in the graph. 

 

5. Types of Graphs 

Graphs can be classified based on various properties: 

 Directed Graph (Digraph): The edges have a direction, i.e., an edge from vertex u to vertex v is 

not the same as an edge from v to u. 

 Undirected Graph: The edges do not have a direction, meaning if there is an edge 

between u and v, it is the same as an edge between v and u. 

 Weighted Graph: The edges carry weights or costs that represent the strength or length of the 

connection between the vertices. 

 Unweighted Graph: The edges do not carry any weights. 

 Connected Graph: A graph is connected if there is a path between every pair of vertices. 

 Disconnected Graph: A graph that is not connected, meaning there exist pairs of vertices with no 

path between them. 

 Cyclic Graph: A graph that contains at least one cycle. 

 Acyclic Graph: A graph with no cycles. 

 

6. Graph Traversal and Spanning Forests 

Graph traversal refers to the process of visiting all the vertices and edges of a graph in a systematic way. 

The two most common traversal algorithms are: 

1. Depth-First Search (DFS): Explores as far as possible along each branch before backtracking. 



o Time Complexity: O(V+E), where V is the number of vertices and E is the number of 

edges. 

2. Breadth-First Search (BFS): Explores all neighbors of a vertex before moving on to the next level 

of neighbors. 

o Time Complexity: O(V+E). 

A Spanning Tree is a subgraph of a graph that includes all the vertices but only enough edges to make 

the graph connected (i.e., no cycles). A Spanning Forest is a collection of spanning trees for a 

disconnected graph. 

 

7. Kruskal’s Algorithm 

Kruskal’s Algorithm is a greedy algorithm used to find the Minimum Spanning Tree (MST) of a graph. The 

MST is a subgraph that connects all vertices with the minimum total edge weight, and no cycles are 

formed. 

Procedure: 

1. Sort all edges of the graph by their weight. 

2. Select the edge with the smallest weight that does not form a cycle with the selected edges. 

3. Repeat until the MST contains exactly V−1 edges (where V is the number of vertices). 

Time Complexity: O(Elog⁡E), where E is the number of edges in the graph. 

 

8. Round-Robin Algorithm 

Round-Robin Scheduling is a simple and widely used algorithm in scheduling systems, but it is also 

applicable in graph-related problems such as load balancing. It works by iterating through a set of tasks 

and distributing them equally in a cyclic manner. 

In the context of graphs, a round-robin algorithm could be used to evenly distribute edges or weights 

across multiple nodes or components. 

 

9. Shortest-Path Algorithm 

The Shortest Path Problem is concerned with finding the shortest path from one vertex to another in a 

graph. Several algorithms exist for solving this problem, including Dijkstra’s Algorithm and Bellman-Ford 

Algorithm. 

Greedy Algorithm: 



 A greedy algorithm makes the locally optimal choice at each stage, with the hope of finding the 

global optimum. Dijkstra’s algorithm is a classic example of a greedy approach for finding the 

shortest path in weighted graphs. 

 

10. Dijkstra’s Algorithm 

Dijkstra’s Algorithm is a popular algorithm for finding the shortest paths from a source vertex to all 

other vertices in a graph. It works on weighted graphs (with non-negative edge weights) and is a greedy 

algorithm. 

Procedure: 

1. Initialize distances from the source vertex to all other vertices as infinity, except the source 

vertex, which has a distance of zero. 

2. Mark the source vertex as visited and move to the nearest unvisited vertex with the smallest 

known distance. 

3. Update the shortest distances for each adjacent vertex. 

4. Repeat the process until all vertices are visited. 

Time Complexity: 

 With a simple array: O(V2) 

 With a priority queue (binary heap): O((V+E)log⁡V) 

 

Conclusion 

Graphs are versatile data structures used to represent a wide range of real-world problems, such as 

networking, social media, and logistics. The choice of graph traversal and algorithms such as Kruskal’s, 

Dijkstra’s, or Warshall’s depends on the specific requirements of the problem, such as minimizing the 

path length, building spanning trees, or computing reachability. By understanding the various graph-

related algorithms and their complexities, you can apply the appropriate technique to solve graph-based 

problems efficiently. 

 

Algorithms   

Algorithms (5 hrs) 

An algorithm is a well-defined sequence of steps or rules designed to solve a problem or perform a task. 

Algorithms are the foundation of computer science and are used to process data, perform calculations, 

automate reasoning, and more. This topic explores the classification of algorithms into various types, 

including deterministic and non-deterministic algorithms, divide and conquer, series and parallel 

algorithms, as well as heuristic and approximate algorithms. 



 

1. Deterministic and Non-Deterministic Algorithms 

Deterministic Algorithm 

A deterministic algorithm is an algorithm that, given a particular input, always produces the same 

output and follows a specific sequence of steps. The behavior of the algorithm is predictable, and there 

is no uncertainty or randomness in its execution. Each step is predefined, and there is no ambiguity in 

the execution flow. 

Examples: 

 Binary Search: Given a sorted array, it always returns the same result for the same input, and the 

search steps are well-defined. 

 Euclidean Algorithm: This algorithm calculates the greatest common divisor (GCD) of two 

numbers in a deterministic manner. 

Key Characteristics: 

 Predictable behavior 

 No randomness or ambiguity 

 Same output for the same input 

Non-Deterministic Algorithm 

A non-deterministic algorithm is an algorithm where the execution can vary for the same input. The 

sequence of steps can involve decisions made randomly, or the algorithm might have multiple possible 

outcomes for a given input. In a non-deterministic algorithm, there is no guarantee that it will always 

follow the same path or yield the same result. 

Examples: 

 Non-deterministic Turing Machine: This type of theoretical machine can take multiple paths for 

a given input, and its behavior is not fixed. 

 Monte Carlo Algorithm: These algorithms use random numbers to produce approximate 

solutions to problems. For the same input, it may generate different results each time. 

Key Characteristics: 

 Unpredictable behavior 

 May involve random or probabilistic decisions 

 Can produce different outputs for the same input 

 

2. Divide and Conquer Algorithm 



The Divide and Conquer technique is a fundamental algorithm design paradigm that involves breaking a 

problem down into smaller subproblems, solving each subproblem independently, and combining the 

results to obtain the solution to the original problem. It is highly effective for problems that have 

overlapping subproblems. 

Steps: 

1. Divide: Break the problem into smaller subproblems. 

2. Conquer: Solve each subproblem recursively. 

3. Combine: Merge the solutions of the subproblems to form the final solution. 

Examples: 

 Merge Sort: This sorting algorithm divides the array into smaller subarrays, recursively sorts 

them, and then merges them to get the sorted array. 

 Quick Sort: Another sorting algorithm that divides the array based on a pivot and recursively 

sorts the subarrays. 

 Binary Search: Involves dividing the search space into halves until the target is found. 

Advantages: 

 Efficient for large problems 

 Reduces time complexity by solving smaller subproblems 

 Often leads to parallelizable solutions 

Time Complexity: In many cases, divide and conquer algorithms have a time complexity of O(nlog⁡n), 

such as in Merge Sort and Quick Sort. 

 

3. Series and Parallel Algorithms 

Series Algorithm 

A series algorithm is one where tasks are executed sequentially, i.e., one after another. Each step of the 

algorithm depends on the result of the previous step, and there is no parallelism involved. These 

algorithms are suitable for problems where the next step cannot be performed until the current step is 

completed. 

Examples: 

 Bubble Sort: The algorithm iterates through the array, compares adjacent elements, and swaps 

them if necessary. The next iteration depends on the results of the previous one. 

 Linear Search: Involves checking each element in a list sequentially until a match is found. 

Key Characteristics: 



 Execution is done step-by-step. 

 Each step is dependent on the previous one. 

 No parallel execution. 

Parallel Algorithm 

A parallel algorithm is one where multiple tasks are executed simultaneously across multiple processors 

or cores. This type of algorithm takes advantage of concurrency to speed up computation, especially for 

large problems or data sets. 

Examples: 

 Matrix Multiplication: In a parallel implementation, the multiplication of different matrix cells 

can be performed simultaneously. 

 Parallel Merge Sort: In parallel Merge Sort, the merge operation can be done concurrently for 

different subarrays. 

Key Characteristics: 

 Tasks are divided into sub-tasks that can be executed simultaneously. 

 Suitable for problems that can be broken down into independent tasks. 

 Requires parallel hardware (e.g., multi-core processors). 

Advantages: 

 Reduces computation time for large datasets. 

 Utilizes multiple processors efficiently. 

 Can solve large-scale problems that are too slow for sequential algorithms. 

 

4. Heuristic Algorithms 

A heuristic algorithm is an approach to problem-solving that uses a practical method or shortcut to 

produce solutions that are good enough for a given problem, especially when finding an optimal solution 

is too time-consuming or computationally expensive. Heuristic algorithms provide approximate solutions 

rather than exact ones, which makes them particularly useful for complex or NP-hard problems. 

Examples: 

 A Search Algorithm*: Used in pathfinding, where the algorithm uses heuristics to estimate the 

cost to reach the goal and chooses the best path accordingly. 

 Traveling Salesman Problem (TSP): Heuristic methods like the nearest neighbor algorithm can 

be used to find an approximate solution to TSP, even though the exact solution may be 

computationally expensive. 



 Simulated Annealing: A probabilistic technique for approximating the global optimum of a given 

function. 

Key Characteristics: 

 Approximate solutions 

 Efficient in finding good solutions quickly 

 Not guaranteed to find the optimal solution 

 

5. Approximate Algorithms 

Approximate algorithms are algorithms designed to find near-optimal solutions to complex problems 

where exact solutions are computationally expensive or infeasible. These algorithms typically provide a 

solution that is close to the optimal solution, often within a specified error bound. 

Examples: 

 Greedy Algorithms: These algorithms make the best choice at each step with the hope of finding 

the optimal solution. However, they may not always produce the optimal solution, but a solution 

that is good enough. 

o Example: The Greedy algorithm for the Knapsack Problem does not always yield the 

optimal solution, but it provides a fast and reasonable approximation. 

 Linear Programming Approximation: Approximation techniques in linear programming can find 

solutions to complex problems like resource allocation without solving the exact problem. 

Key Characteristics: 

 Close-to-optimal solutions 

 Suitable for complex problems where exact solutions are computationally expensive 

 Often used in optimization problems 

 

Conclusion 

Algorithms form the backbone of problem-solving in computer science, and their classification into 

deterministic vs. non-deterministic, divide and conquer, series and parallel, heuristic, and approximate 

types helps in choosing the right approach for different types of problems. Understanding the properties 

and applications of these algorithms allows you to design and implement efficient solutions for a wide 

range of problems in computing, from sorting and searching to complex optimization and approximation 

tasks. 

 

Lab Works   



Here’s a set of Java code implementations for the specified lab exercises: 

1. Implementations of Different Operations Related to Stack 

class Stack { 

    private int maxSize; 

    private int top; 

    private int[] stack; 

 

    public Stack(int size) { 

        maxSize = size; 

        stack = new int[maxSize]; 

        top = -1; 

    } 

 

    // PUSH operation 

    public void push(int value) { 

        if (top < maxSize - 1) { 

            stack[++top] = value; 

            System.out.println(value + " pushed to stack"); 

        } else { 

            System.out.println("Stack Overflow"); 

        } 

    } 

 

    // POP operation 

    public void pop() { 

        if (top >= 0) { 

            System.out.println(stack[top--] + " popped from stack"); 

        } else { 

            System.out.println("Stack Underflow"); 



        } 

    } 

 

    // PEEK operation 

    public void peek() { 

        if (top >= 0) { 

            System.out.println("Top element: " + stack[top]); 

        } else { 

            System.out.println("Stack is empty"); 

        } 

    } 

 

    public static void main(String[] args) { 

        Stack stack = new Stack(5); 

        stack.push(10); 

        stack.push(20); 

        stack.push(30); 

        stack.peek(); 

        stack.pop(); 

        stack.peek(); 

    } 

} 

2. Implementations of Different Operations Related to Linear and Circular Queues 

class Queue { 

    private int maxSize; 

    private int front, rear; 

    private int[] queue; 

 

    public Queue(int size) { 



        maxSize = size; 

        queue = new int[maxSize]; 

        front = -1; 

        rear = -1; 

    } 

 

    // Enqueue operation for Linear Queue 

    public void enqueue(int value) { 

        if (rear < maxSize - 1) { 

            if (front == -1) front = 0; 

            queue[++rear] = value; 

            System.out.println(value + " added to queue"); 

        } else { 

            System.out.println("Queue Overflow"); 

        } 

    } 

 

    // Dequeue operation for Linear Queue 

    public void dequeue() { 

        if (front == -1) { 

            System.out.println("Queue Underflow"); 

        } else { 

            System.out.println(queue[front++] + " removed from queue"); 

            if (front > rear) { 

                front = rear = -1; 

            } 

        } 

    } 

 



    // Circular Queue 

    public void circularEnqueue(int value) { 

        if ((rear + 1) % maxSize == front) { 

            System.out.println("Queue Overflow"); 

        } else { 

            if (front == -1) front = 0; 

            rear = (rear + 1) % maxSize; 

            queue[rear] = value; 

            System.out.println(value + " added to circular queue"); 

        } 

    } 

 

    public void circularDequeue() { 

        if (front == -1) { 

            System.out.println("Queue Underflow"); 

        } else { 

            System.out.println(queue[front] + " removed from circular queue"); 

            if (front == rear) { 

                front = rear = -1; 

            } else { 

                front = (front + 1) % maxSize; 

            } 

        } 

    } 

 

    public static void main(String[] args) { 

        Queue q = new Queue(5); 

        q.enqueue(10); 

        q.enqueue(20); 



        q.dequeue(); 

        q.circularEnqueue(30); 

        q.circularDequeue(); 

    } 

} 

3. Solutions of TOH and Fibonacci Series Using Recursion 

// Tower of Hanoi 

class TowerOfHanoi { 

    public void solveTOH(int n, char source, char destination, char auxiliary) { 

        if (n == 1) { 

            System.out.println("Move disk 1 from " + source + " to " + destination); 

            return; 

        } 

        solveTOH(n - 1, source, auxiliary, destination); 

        System.out.println("Move disk " + n + " from " + source + " to " + destination); 

        solveTOH(n - 1, auxiliary, destination, source); 

    } 

 

    public static void main(String[] args) { 

        TowerOfHanoi toh = new TowerOfHanoi(); 

        toh.solveTOH(3, 'A', 'C', 'B'); 

    } 

} 

 

// Fibonacci Series using Recursion 

class Fibonacci { 

    public int fib(int n) { 

        if (n <= 1) { 

            return n; 



        } 

        return fib(n - 1) + fib(n - 2); 

    } 

 

    public static void main(String[] args) { 

        Fibonacci fibonacci = new Fibonacci(); 

        int n = 6; 

        System.out.println("Fibonacci of " + n + " is: " + fibonacci.fib(n)); 

    } 

} 

4. Implementations of Different Operations Related to Linked List (Singly and Doubly Linked List) 

// Singly Linked List 

class SinglyLinkedList { 

    Node head; 

 

    static class Node { 

        int data; 

        Node next; 

 

        Node(int data) { 

            this.data = data; 

            this.next = null; 

        } 

    } 

 

    // Insert at the end 

    public void insert(int data) { 

        Node newNode = new Node(data); 

        if (head == null) { 



            head = newNode; 

        } else { 

            Node current = head; 

            while (current.next != null) { 

                current = current.next; 

            } 

            current.next = newNode; 

        } 

    } 

 

    // Print the list 

    public void printList() { 

        Node current = head; 

        while (current != null) { 

            System.out.print(current.data + " "); 

            current = current.next; 

        } 

        System.out.println(); 

    } 

 

    public static void main(String[] args) { 

        SinglyLinkedList list = new SinglyLinkedList(); 

        list.insert(10); 

        list.insert(20); 

        list.insert(30); 

        list.printList(); 

    } 

} 

 



// Doubly Linked List 

class DoublyLinkedList { 

    Node head; 

 

    static class Node { 

        int data; 

        Node next; 

        Node prev; 

 

        Node(int data) { 

            this.data = data; 

            this.next = null; 

            this.prev = null; 

        } 

    } 

 

    // Insert at the end 

    public void insert(int data) { 

        Node newNode = new Node(data); 

        if (head == null) { 

            head = newNode; 

        } else { 

            Node current = head; 

            while (current.next != null) { 

                current = current.next; 

            } 

            current.next = newNode; 

            newNode.prev = current; 

        } 



    } 

 

    // Print the list in forward direction 

    public void printList() { 

        Node current = head; 

        while (current != null) { 

            System.out.print(current.data + " "); 

            current = current.next; 

        } 

        System.out.println(); 

    } 

 

    // Print the list in reverse direction 

    public void printReverse() { 

        Node current = head; 

        while (current != null && current.next != null) { 

            current = current.next; 

        } 

        while (current != null) { 

            System.out.print(current.data + " "); 

            current = current.prev; 

        } 

        System.out.println(); 

    } 

 

    public static void main(String[] args) { 

        DoublyLinkedList list = new DoublyLinkedList(); 

        list.insert(10); 

        list.insert(20); 



        list.insert(30); 

        list.printList(); 

        list.printReverse(); 

    } 

} 

5. Implementation of Trees: AVL Trees, Balancing of AVL 

// AVL Tree implementation is more complex. Below is a simplified skeleton: 

 

class AVLTree { 

    class Node { 

        int data, height; 

        Node left, right; 

 

        public Node(int data) { 

            this.data = data; 

            height = 1; 

        } 

    } 

 

    private Node root; 

 

    // Get height of the node 

    private int height(Node N) { 

        if (N == null) { 

            return 0; 

        } 

        return N.height; 

    } 

 



    // Get balance factor 

    private int getBalance(Node N) { 

        if (N == null) { 

            return 0; 

        } 

        return height(N.left) - height(N.right); 

    } 

 

    // Right rotate 

    private Node rightRotate(Node y) { 

        Node x = y.left; 

        Node T2 = x.right; 

 

        x.right = y; 

        y.left = T2; 

 

        y.height = Math.max(height(y.left), height(y.right)) + 1; 

        x.height = Math.max(height(x.left), height(x.right)) + 1; 

 

        return x; 

    } 

 

    // Left rotate 

    private Node leftRotate(Node x) { 

        Node y = x.right; 

        Node T2 = y.left; 

 

        y.left = x; 

        x.right = T2; 



 

        x.height = Math.max(height(x.left), height(x.right)) + 1; 

        y.height = Math.max(height(y.left), height(y.right)) + 1; 

 

        return y; 

    } 

 

    // Insert node and balance AVL 

    public Node insert(Node node, int data) { 

        if (node == null) { 

            return new Node(data); 

        } 

 

        if (data < node.data) { 

            node.left = insert(node.left, data); 

        } else if (data > node.data) { 

            node.right = insert(node.right, data); 

        } else { 

            return node; 

        } 

 

        node.height = 1 + Math.max(height(node.left), height(node.right)); 

 

        int balance = getBalance(node); 

 

        if (balance > 1 && data < node.left.data) { 

            return rightRotate(node); 

        } 

 



        if (balance < -1 && data > node.right.data) { 

            return leftRotate(node); 

        } 

 

        if (balance > 1 && data > node.left.data) { 

            node.left = leftRotate(node.left); 

            return rightRotate(node); 

        } 

 

        if (balance < -1 && data < node.right.data) { 

            node.right = rightRotate(node.right); 

            return leftRotate(node); 

        } 

 

        return node; 

    } 

 

    public static void main(String[] args) { 

        AVLTree tree = new AVLTree(); 

        tree.root = tree.insert(tree.root, 10); 

        tree.root = tree.insert(tree.root, 20); 

        tree.root = tree.insert(tree.root, 30); 

    } 

} 

Note: Implementations for the other exercises (Merge Sort, Searching Techniques, Graph Traversals, 

Hashing, Heap, etc.) require similar levels of detail. Let me know if you want implementations for each or 

specific ones. 

 

Syllabus  



Course Description 

Course Description 

This course includes fundamental concept of data structures such as stack, queue, list.  

linked list, trees and graph: application of these data structures along with several algorithms. 

Course Objectives 

The general objective of this course is to provide fundamental concepts of data structures, different 

algorithms and their implementation. 

 Unit Contents 

1. Introduction to Data Structure : 2 hrs 

Definition, Abstract Data Type, Importance of Data structure 

2. The Stack : 3 hrs 

Introduction, Stack as an ADT, POP and PUSH Operation, Stack Application: Evaluation of Infix, Postfix, 

and Prefix Expressions, Conversion of Expression. 

3. Queue : 3 hrs 

Introduction, Queue as an ADT , Primitive Operations in Queue, Linear and Circular Queue and Their 

Application, Enqueue and Dequeue, Priority Queue 

4. List : 2 hrs 

Introduction, Static and Dynamic List Structure, Array Implementation of Lists, Queue as a list 

5. Linked Lists : 5 hrs 

Introduction, Linked List as an ADT, Dynamic Implementation, Insertion & Deletion of Nodes, Linked 

Stacks and Queues, Doubly Linked Lists and Its Advantages 

6. Recursion : 4 hrs 

Introduction, Principle of Recursion, Recursion vs. Iteration, Recursion Example: TOH and Fibonacci 

Series, Applications of Recursion, Search Tree 

7. Trees : 5 hrs 

Introduction, Basic Operation in Binary tree, Tree Search and Insertion/Deletion, Binary Tree 

Transversals(pre-order, post-order and in-order), Tree Height, Level and Depth, Balanced Trees: AVL 

Balanced Trees, Balancing Algorithm, The Huffman Algorithm, Game tree, B-Tree 

8. Sorting : 5 hrs 

Introduction, Internal and External Sort, Insertion and Selection Sort, Exchange Sort, Bubble and Quick 

Sort, Merge and Radix Sort, Shell Sort, Binary Sort, Heap Sort as Priority Queue, Efficiency of Sorting, 

Big’O’Notation. 



9. Searching : 5 hrs 

Introduction to Search Technique; essential of search, Sequential search, Binary search, Tree search, 

General search tree, Hashing: Hash function and hash tables, Collision resolution technique, Efficiency 

comparisons of different search technique. 

10. Graphs : 5 hrs 

Introduction, Graphs as an ADT, Transitive Closure, Warshall’s Algorithm, Types of Graph, Graph Traversal 

and Spanning Forests, Kruskal’s and Round-Robin Algorithms, Shortest- path Algorithm, Greedy 

Algorithm, DijKstra’s Algorithm 

11. Algorithms : 5 hrs 

Deterministic and Non-deterministic Algorithm, Divide and Conquer Algorithm, Series and Parallel 

Algorithm, Heuristic and Approximate Algorithms 

Laboratory Works  

 

There shall be 10 lab exercises based on C or Java 

1. Implementations of different operations related to Stack 

2. Implementations of different operations related to linear and circular queues 

3. Solutions of TOH and Fibonacci Series using Recursion 

4. Implementations of different operations related to linked list: singly and doubly linked 

5. Implementation of trees: AVL trees, Balancing of AVL 

6. Implementation of Merge sort 

7. Implementation of different searching technique: sequential, Tree and Binary 

8. Implementation of Graphs: Graph traversals 

9. Implementation of Hashing 

10. Implementations of Heap 

 


